Stream Concavity as a Predictor of River Corridor Exchange

Hunter Stanke

Ecosystem Informatics Summer Institute

Methods

* Rivers flow

- Rivers flow
- Exchange water and solutes with the landscape

Methods

- Rivers flow
- Exchange water and solutes with the landscape
- Exchange results in TRANSIENT STORAGE

Methods

* Rivers flow

Introduction

- Exchange water and solutes with the landscape
- Exchange results in TRANSIENT STORAGE
- Provides ecosystem services

Methods

- Decades of research, no predictive capacity
- Studies report contrasting results

Introduction

Methods

- Decades of research, no predictive capacity
- Studies report contrasting results

Introduction

Methods

- Decades of research, no predictive capacity
- Studies report contrasting results
- Likely related to physical environment and hydrologic forcing

Discussion

Introduction

Methods

- Decades of research, no predictive capacity
- Studies report contrasting results
- Likely related to physical environment and hydrologic forcing

Introduction

Methods

Results

- Decades of research, no predictive capacity
- Studies report contrasting results
- Likely related to physical environment and hydrologic forcing

Introduction

Methods

- Decades of research, no predictive capacity
- Studies report contrasting results
- Likely related to physical environment and hydrologic forcing
- Need for predictive framework

Introduction

Methods

Results

Objectives

1) Assemble comprehensive dataset assessing exchange across gradient of geomorphic and hydrologic conditions

Introduction

Methods

Results

Lookout Creek Drainage Network -- HJA Experimental Forest

Objectives

1) Assemble comprehensive dataset assessing exchange across gradient of geomorphic and hydrologic conditions

2) Predict response of river corridor exchange with respect to TOPOGRAPHIC, HYDROLOGIC, and CONCAVITY indices.

Introduction

Methods

Results

Objectives

1) Assemble comprehensive dataset assessing exchange across gradient of geomorphic and hydrologic conditions

2) Predict response of river corridor exchange with respect to TOPOGRAPHIC, HYDROLOGIC, and CONCAVITY indices

3) Compare performance of linear models and machine learning techniques in predicting exchange response

Introduction

Methods

Results

. 20

100

. 20

. 20

Exchange Response

Introduction

Methods

Topographic & Hydrologic Predictors

- Valley Slope
- Valley Width
- Sinuosity
- * Discharge
- * Velocity

Introduction

Methods

Section Sec

Discussion

Introduction

Methods

- Section 2 Sec vertical 'curviness'
- Stream concavity induces hyporheic exchange

Introduction

Methods

- Essentially measures vertical 'curviness'
- Stream concavity induces hyporheic exchange
- Second derivative describes shape

Introduction

Methods

Results

- Essentially measures vertical 'curviness'
- Stream concavity induces hyporheic exchange
- Second derivative describes shape
- Sum +/- areas

Introduction

Methods

Results

Linear Modelling Results

- Simple analysis, assume no interaction among predictors
- Automated Model Selection

Discussion

Results

Introduction

Methods

Linear Modelling Results

Simple analysis, assume no interaction among predictors

Methods

- Automated Model Selection
- * Poor results

Model Form	ula Adj. R ²	
T99 ~ Discharge + V + Concavity	/elocity 0.32	
Skewness ~ Valley + Valle	y Width	
CV ~ Discharg	ge 0.05	
Holdback ~ Valley + Valley	y Width 0.06	
Results	Discussion	

Linear Modelling Results

- Simple analysis, assume no interaction among predictors
- Automated Model Selection
- Poor results
- Best performance with T99

24/2	Model Formula	Adj. R ²
(T99 ~ Discharge + Velocity + Concavity	0.32
	Skewness ~ valley slope + Valley Width	0.08
	CV ~ Discharge	0.05
	Holdback ~ Valley Slope + Valley Width	0.06

Kesuits

DISCUSSION

Introduction

Methods

Compare multiple modelling approaches

Methods

Results

Compare multiple modelling approaches 5-fold cross validation

Methods

- Compare multiple modelling approaches
- 5-fold cross validation

Introduction

Methods

- Compare multiple modelling approaches
- S-fold cross validation
- Similar performance across all models

Introduction

Methods

Results

- Compare multiple modelling approaches
- 5-fold cross validation
- Similar performance across all models
- No models beat baseline predictions

Results

Discussion

Introduction

Methods

What does it all mean?

 Maintain limited predictive power of river corridor exchange

Methods

What does it all mean?

- Maintain limited predictive power of river corridor exchange
- Hydrologic indices are likely substantial drivers

Introduction

Methods

What does it all mean?

- Maintain limited predictive power of river corridor exchange
- Hydrologic indices are likely substantial drivers
- Stream concavity appears to be of lesser influence

Introduction

Methods

Billy Stansfield & Tadd Bindas

Julia Jones, Rebecca Hutchinson, Skuyler Herzog, Paige Becker & Adam Ward

