

Dispersals as Gateways

- Simulate dispersals from CWD detection points
- Track the times deer reach opposite disease zone
- Index of connectivity between zones

- Simulate dispersals from CWD detection points
- Track the times deer reach opposite disease zone
- Index of connectivity between zones

Dispersals as Gateways

- Simulate dispersals from CWD detection points
- Track the times deer reach opposite disease zone
- Index of connectivity between zones

Dispersals as Gateways

- Simulate dispersals from CWD detection points
- Track the times deer reach opposite disease zone
- Index of connectivity between zones

Agents

- Yearling male deer
 - Unique ID
 - \clubsuit Location
 - Stochastic Start
 Point
 - Preferred Direction
 - Memory of previous
 1 km travel

Environment

- Raster representationLandscape features
 - Land Cover Type
 - Distance to forest

Movement

- Raster based movement rules
- Deer can move to any nearest neighbor

Movement

- Raster based movement rules
- Deer can move to any nearest neighbor
- Directionally biased

Cell Suitability

Land Cover

 Discrete probability of movement by cover type

Forest	1.0
Agriculture	0.8
Emergent Wetland	0.8
Low Urban	0.5
High Urban	0.15
Open Water	0.05

Cell Suitability

Distance to Forest

- Exponential Decay
- Modelled from NY movement data

Future Directions

- Update to continuous movement
- Sensitivity analysis (IN PROGRESS)
- Simulate across entire study area
 - Identify corridors?